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ABSTRACT:
Passive acoustics provides a powerful tool for monitoring the endangered North Atlantic right whale (Eubalaena
glacialis), but robust detection algorithms are needed to handle diverse and variable acoustic conditions and

differences in recording techniques and equipment. This paper investigates the potential of deep neural networks

(DNNs) for addressing this need. ResNet, an architecture commonly used for image recognition, was trained to

recognize the time-frequency representation of the characteristic North Atlantic right whale upcall. The network was

trained on several thousand examples recorded at various locations in the Gulf of St. Lawrence in 2018 and 2019,

using different equipment and deployment techniques. Used as a detection algorithm on fifty 30-min recordings

from the years 2015–2017 containing over one thousand upcalls, the network achieved recalls up to 80% while main-

taining a precision of 90%. Importantly, the performance of the network improved as more variance was introduced

into the training dataset, whereas the opposite trend was observed using a conventional linear discriminant analysis

approach. This study demonstrates that DNNs can be trained to identify North Atlantic right whale upcalls under

diverse and variable conditions with a performance that compares favorably to that of existing algorithms.
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I. INTRODUCTION

The North Atlantic right whale (NARW, Eubalaena
glacialis) comprises a small cetacean population that

counted �400 individuals in 2017 (Hayes et al., 2018; Pace

et al., 2017; Pettis et al., 2019). Listed as endangered in

Canada (COSEWIC, 2013), this population has been declin-

ing since 2010 (Pettis et al., 2019). NARW used to be

mainly distributed along the U.S. continental shelf up to the

Bay of Fundy and the Western Scotian shelf in Canada. This

distribution, however, has changed in the last decade (Davis

et al., 2017). The occasional yearly occurrence of a few

individuals in the Gulf of St. Lawrence in summer and fall

markedly increased in 2015 and a high seasonal occurrence

has continued since (Simard et al., 2019). This area is a site

of intensive fixed-gear fishing. It is crossed by the main con-

tinental seaway that connects the Atlantic and the Great

Lakes (Simard et al., 2014). In 2017, 12 individuals died in

the Gulf of St. Lawrence. The mortalities involved collisions

with ships and entanglement in fixed fishing gear. Protection

measures, which include vessel speed reduction and fishing

closure, were then put in place by the management authori-

ties in an effort to prevent the recurrence of such events

(DFO, 2018).

The key information required to trigger vessel speed

reduction and fishing closure is the presence of the animals

in the highest risk areas. This information can be acquired

over large areas for short time windows from systematic or

opportunistic sightings from aircrafts or vessels. However,

to obtain continuous round-the-clock information over the

season, NARW detection with passive acoustic monitoring

(PAM) systems is needed (Simard et al., 2019). Various

configurations of PAM systems are possible for small- to

large-scale coverages (Gervaise et al., 2019b), including

some supporting detection in quasi real-time such as

Viking-WOW buoys,1 Slocum gliders, and fixed buoys

(Baumgartner et al., 2013, 2019).

NARW upcall detection and classification (DC) algo-

rithms are a key component of such PAM systems. Several

algorithms, exploiting the time-frequency structure of the

call, have been used so far (Baumgartner and Mussoline,

2011; Gillespie, 2004; Mellinger, 2004; Simard et al., 2019;

Urazghildiiev and Clark, 2006, 2007; Urazghildiiev et al.,
2008). Their performance is dependent of the signal-to-noise

ratio (SNR), which varies with the range of the calling

whale, the noise levels, and other biological and instrumen-

tation factors (Gervaise et al., 2019b; Simard et al., 2019).

The DC performance of these classical signal processing
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methods under actual in situ recording conditions tends to

plateau around a detection probability of about 50% (i.e.,

recall index) when the false detection probability is kept

below about 10% (Shiu et al., 2020; Simard et al., 2019).

The objective of the present study is to test if modern

machine-learning approaches can break this apparent DC

performance ceiling.

Within the last decade, artificial neural networks have

become the preferred machine-learning approach for solving

a wide range of tasks, outperforming existing computational

methods and achieving human-level accuracy in domains

such as image analysis (He et al., 2015) and natural speech

processing (Hinton et al., 2012). Originally inspired by the

human brain, neural networks consist of a large number of

interconnected “neurons,” each typically performing a sim-

ple linear operation on input data, specified by a set of

weights and a bias, followed by an activation function. In a

supervised training approach, the network is given examples

of labeled data and the weights and biases are adjusted to

produce the desired output using an optimization algorithm.

Modern neural networks exhibit multi-layer architectures,

which enable them to build complex concepts out of simpler

concepts and hence learn a non-linear representation of the

data conducive to solving a given task. Therefore, modern

neural networks are often referred to as deep neural net-

works (DNNs), and the strategy of representing complex

data as a nested hierarchy of concepts is referred to as deep

learning. Two of the most commonly encountered basic

architectures are convolutional neural networks (CNNs) and

recurrent neural networks (RNNs), which are particularly

well adapted to the tasks of analyzing image data and

sequential data, respectively. The availability of large

labeled datasets, containing millions of labeled examples,

has been a key factor in the success of DNNs in domains

such as image analysis and natural speech processing.

Therefore, much of the current research in deep learning

focuses on how to train DNNs more efficiently on smaller

datasets.

Shallow neural networks have been employed for the

purpose of sound classification in marine bioacoustics since

the 1990s, usually combined with a method of feature

extraction, e.g., Bahoura and Simard (2010), but also acting

directly on the spectrogram (Halkias et al., 2013; Potter

et al., 1994). In the last few years, the first studies employ-

ing modern DNNs have been reported. Examples include

classification of fish sounds (Malfante et al., 2018), detec-

tion and classification of orca vocalizations (Bergler et al.,
2019), classification of multiple whale species (McQuay

et al., 2017; Thomas et al., 2019), and detection and classifi-

cation of sperm whale vocalizations (Bermant et al., 2019).

In all cases, CNNs have been leveraged to analyze the infor-

mation encoded in spectrograms, which is also the strategy

adopted in the present work.

The paper is structured as follows. In Sec. II, we first

describe how the acoustic data was collected, then discuss

the generation of training datasets, the neural network

design, and the training protocol. In Sec. III, we present the

results of the detection and classification tasks, which are

then discussed in Sec. IV. Finally, in Sec. V we summarize

and conclude.

II. MATERIALS AND METHODS

A. Acoustic data

The PAM data were collected between 2015 and 2019

at six stations in the southern Gulf of St. Lawrence (Fig. 1).

Two different deployment configurations were employed,

producing distinct datasets, A, B, and B* (Table I). In addi-

tion to these datasets, we have also considered a third data-

set, C, which is a subset of the DCLDE 2013 dataset

generated from PAM data collected in the Gulf of Maine in

2009.2

In the case of dataset A, the PAM system was deployed

from the surface, with the hydrophone tethered to a real-

time ocean observing Viking buoy (Multi-Electronique Inc.,

Rimouski, Qc, Canada)3 with a 60-m long cable floating at

FIG. 1. (Color online) Map of the Gulf

of St. Lawrence with bathymetry and

seaways, showing the location of the

PAM stations. Circles indicate surface

deployments (dataset A) while stars

indicate bottom deployments (datasets

B and B*).
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the surface for half of its length. The recording digital

hydrophone, at a depth of �30 m, was an ic-Listen HF

(Ocean Sonics, Truro Heights, NS, Canada).4 It sampled

continuously the raw (0 gain) acoustic signal with 24-bit res-

olution. The receiving sensitivity of the hydrophone was

–170 dB re 1 V lPa–1.

In the case of datasets B and B*, the PAM system used

short (< 10 m) “I”-type oceanographic moorings, with an

anchor, an acoustic release, and streamlined underwater

floats, for bottom deployment at depths varying from 75 to

125 m, with the autonomous hydrophone �5 m above the

seafloor. The recording equipment consisted of AURAL M2

(Multi-Electronique Inc., Rimouski, Qc, Canada)5 sampling

the 16-dB pre-amplified acoustic signal with a 16-bit resolu-

tion at duty cycles of 15 or 30 min every hour. The receiving

sensitivity of the HTI 96-MIN (High Tech Inc., Gulfport,

MS) hydrophone equipping the AURAL was �16461 dB re

1 V lPa–1 over the <0.5-kHz bandwidth used here. Further

details can be found in Simard et al. (2019).

Because of the different acoustic equipment and deploy-

ment types, the recordings from the two datasets differed sig-

nificantly in terms of signal amplitude and noise background

from different sources, including flow noise, strum, and

knocks resulting from the effects of tidal currents and the

surface motion due to waves on the hydrophone and deploy-

ment apparatus. Additional SNR variability of the recordings

was introduced by the different locations and depths at which

the hydrophones were deployed in the southern Gulf of St.

Lawrence, providing different exposures to the above envi-

ronmental conditions and to the shipping noise field from the

main seaway (Aulanier et al., 2016; Simard et al., 2019).

The datasets used here therefore represent a large range of

conditions that can be encountered in realizing the DC task

for the low-frequency NARW upcall from acoustic data col-

lected using different PAM systems. To develop a deep

learning model that is robust to such a realistic range of vari-

ability, no effort was made to enhance the SNR before feed-

ing the data to the neural network.

B. Training and test datasets

Datasets A and B were first analyzed with a classical

time-frequency based detector (TFBD) following Mellinger

(2004) and Mouy et al. (2009). This algorithm looks for a

typical image of NARW upcall in the SNR-enhanced (i.e.,

noise-subtracted), high-resolution (32 ms� 3:9 Hz) spectro-

gram of the recordings, and a detection is triggered by the

degree of cross-coincidence. The NARW upcall template

used was a 1-s, 100–200 Hz chirp with a 610 Hz bandwidth.

For further details, see Simard et al. (2019). The resulting

detections were then manually validated by an expert by

examining the spectrogram and labeled as “true” or “false”

using the longer call pattern context in a �1-min window. In

NARW call occurrence studies, the false detections are then

eliminated. For the present work, however, both true and

false detections were extracted from the recordings and used

as “positives” and “negatives,” respectively, for building the

training datasets A and B (Table II). For dataset C, we used

the existing annotations from the DCLDE 2013 Challenge.

Finally, we built the composite datasets AB and ABC by

combining all the samples from the individual datasets.

To examine the accuracy of the validation protocol

used for producing datasets A and B, a second expert was

subsequently tasked with reviewing a subset of the annota-

tions. The review differed from the validation in several

ways: the second expert had knowledge of both the labels

assigned by the first expert and the classification proposed

by the DNN. The second expert used raw spectrograms

while the first expert used SNR-enhanced spectrograms6 and

a larger temporal context, including considerations of occur-

rence probability over the seasons. Finally, the first expert

was instructed to adopt a more conservative annotation strat-

egy, always assigning a negative label in cases of substantial

doubt, whereas no such instruction was given to the second

expert. The results of the annotation review will be dis-

cussed in Sec. IV.

The extracted segments were 3 s long and centered on

the midpoint of the upcall, as determined by the TFBD algo-

rithm. However, the midpoint determined by the algorithm

rarely coincided with the actual midpoint of the upcall,

producing segments that were misaligned by up to 0.5 s in

either direction. We note that such quasi-random time shifts

are desirable for training a DNN classifier because they

encourage the network to learn a more general, time transla-

tion invariant, representation of the upcall.

For the purpose of testing the classification performance

of the trained models, including their capacity for generaliz-

ing, we split datasets A and B as follows: Samples obtained

at times t < t0 were used for training and validation, while

samples obtained at times t > t0 were retained for testing.

Here, t0 was chosen to produce a 85:15 split ratio between

the number of samples used for training and validation and

the number of samples used for testing (Fig. 2). This split

implies temporal separations of 52 and 33 min between the

latest sample in the training dataset and the earliest sample

in the test dataset for A and B, respectively.

TABLE I. Datasets used in this work.

Dataset Deployment type Location Year(s) Analysis method

A Surface buoy Gulf of St. Lawrence 2019 Expert validation of detections reported by TFBD algorithm

B Bottom mooring Gulf of St. Lawrence 2018 Expert validation of detections reported by TFBD algorithm

B* Bottom mooring Gulf of St. Lawrence 2015–2017 Full manual analysis of fifty 30-min recordings

C Bottom mooring Gulf of Maine 2009 Full manual analysis of seven days of recordings
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From the bottom deployments, we also produced data-

set B* consisting of fifty 30-min segments from two years

between 2015 and 2017 (Fig. 3). These data were used for

testing the detection performance of the neural network on

continuous data. The data cover all seasons and times of the

day, hence providing a representative picture of the acoustic

conditions found in the Gulf of St. Lawrence. Moreover, the

data have no temporal overlap with the training datasets A

and B, which originate from 2019 and 2018, respectively.

Dataset B* was manually analyzed in its entire length by a

third expert who identified 1157 NARW upcall occurrences.

C. Spectrogram and SNR computation

First, the 3-s acoustic segments were downsampled to

1000 samples s�1 using the MATLAB resample function,

which employs a polyphase anti-aliasing filter. The spectro-

gram representation was then computed on a dB scale using

a window size of 0.256 s, a step size of 0.032 s (88% over-

lap), and a Hamming window. These parameters have been

shown to be optimal for identifying NARW upcalls

(Gervaise et al., 2019a) and produce a spectrogram with

(time, frequency) dimensions of 94� 129. We note that the

spectrograms were fed to the network in their raw form. In

particular, no effort was made to normalize the spectro-

grams to correct for systematic differences in signal ampli-

tude in the three datasets. This approach was adopted to

produce the most general model possible.

For the estimation of the SNR value of each sample,

positive or negative, the following heuristic algorithm was

implemented: (1) A denoised spectrogram, Xd, was created

by subtracting first the median value of each time slice (to

reduce broadband, impulsive noise) and then subtracting the

median value of each frequency slice (to reduce tonal noise).

(2) The mid-point of the upcall was determined by sliding a

1-s wide window across the denoised spectrogram while

seeking to maximize,

sumtðmaxf ðXdÞÞ þ sumf ðmaxtðXdÞÞ;

in the frequency interval 80–200 Hz, where the subscripts

indicate the axis (t, time; f, frequency) along which the

mathematical operation is applied. (3) A trace was drawn by

connecting the pixels with the maximum value in each time

slice of Xd. (4) The median value of the original spectro-

gram, X, was computed along this trace, including also the

three pixels immediately above and below to account for the

finite “width” of the upcall. (5) Finally, the median values of

X in the 0.5-s adjacent windows were computed for the fre-

quency interval 80–200 Hz and subtracted. Figure 4 shows

the result obtained on a typical positive sample from dataset

A. We stress that SNR estimation is highly challenging for

the datasets considered in this work because of non-uniform

stationary noise, transient noise, and distortion of the upcalls

due to propagation effects.

D. Neural network architecture

The problem was set up as a binary classification task:

A neural network was trained to classify the 3-s spectro-

grams according to the criterion, contains (positive class, 1)

or does not contain (negative class, 0) a NARW upcall. We

used a residual network (ResNet), which is a CNN architec-

ture mainly built of residual blocks with skip connections

(He et al., 2016). CNNs consist of a stack of convolutional

TABLE II. Number of samples in the datasets used for training and testing the classifiers. The composite datasets AB and ABC were produced by combining

all the samples from the individual datasets.

Training and validation Testing

Dataset No. samples Positives Negatives No. samples Positives Negatives

A 1767 42% 58% 307 18% 82%

B 3309 61% 39% 579 59% 41%

C 3000 50% 50% — — —

AB 5076 55% 45% 886 45% 55%

ABC 8076 53% 47% — — —

FIG. 2. (Color online) Time-split used to produce training and validation

sets and test sets for Datasets A (a) and B (b).

FIG. 3. (Color online) Temporal distribution of the training datasets A and

B and the continuous test dataset B*.
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layers followed by a few fully connected layers. During the

training process, the convolutional layers learn to extract

patterns from the input images, which are passed to the fully

connected layers for classification (Goodfellow et al., 2016,

Chap. 9). The residual blocks in a ResNet are composed of

convolutional layers, but allow some connections between

layers to be skipped, thereby avoiding “vanishing” and

“exploding” gradients during training (He et al., 2016). We

used blocks with batch normalization (Ioffe and Szegedy,

2015) and rectified linear units (ReLU) (Nair and Hinton,

2010). The architecture was composed of eight such blocks

preceded by one convolutional layer and followed by a

batch normalization layer, global average pooling (Lin

et al., 2013), and a fully connected layer with a softmax

function, which is responsible for the classification. Finally,

the output layer gave a score in the range 0–1 for each of the

two classes (positive and negative), which add up to 1.

E. Training protocol

We trained the network on two NVIDIA RTX 2080 Ti

GPUs with 11 GB of memory. Training was performed with

a batch size of 128 and terminated after a pre-set number of

epochs, N. That is, 128 samples were passed through the net-

work between successive optimizations of the weights and

biases, and every sample in the training dataset was passed

through the network N times. Weights and biases were opti-

mized with the ADAM optimizer (Kingma and Ba, 2014)

using the recommended parameters: an initial learning rate

of 0.001, decay of 0.01, b1 of 0.9, and b2 of 0.999. No effort

was made to explore the effects of these parameters on the

training outcome. The network was trained to maximize the

F1 score, defined as the harmonic mean of precision and

recall, F1 ¼ 2PR=ðPþ RÞ, where R is the recall, i.e., the

fraction of the upcalls that were detected, and P is the preci-

sion, i.e., the fraction of the detected upcalls that were in fact

upcalls. Thus, the F1 score considers both recall and preci-

sion and attaches equal importance to the two.

Initially, the network was trained using fivefold cross-

validation with a 85:15 random split between the training

and validation sets, allowing us to confirm that the optimiza-

tion had converged without overfitting. Based on these

initial training sessions, N¼ 100 was found to provide an

optimal choice for all the training datasets. The network was

then trained on the full training datasets without cross-

validation for N¼ 100 epochs. This was repeated nine times

with different random number generator seeds to assess the

sensitivity of the training outcome to the initial conditions.

F. Linear Discriminant Analysis (LDA)

To establish a baseline against which to compare the

performance of the neural network, we implemented a LDA

model following the approach of (Martinez and Kak, 2001),

noting that such models have traditionally been adopted for

solving sound detection and classification tasks in marine

bioacoustics. First, the 94� 129 spectrogram matrix was

flattened to a vector of length 12 126. Second, the dimen-

sionality was reduced by means of principal component

analysis (PCA). Third, we trained the LDA classifier using a

least-squares solver combined with automatic shrinkage fol-

lowing the Ledoit-Wolf lemma (Ledoit and Wolf, 2004).

The training was repeated for several choices of PCA

dimensionality using a 85:15 random split between training

and validation sets, and the dimensionality yielding the best

performance on the validation set was selected.

G. Detection algorithm

For the purpose of detecting NARW upcalls in continu-

ous acoustic data, the following simple algorithm was

implemented: First, the data were segmented using a win-

dow of 3 s and a step size of Dt ¼ 0:5 s. Each 3-s segment

was then fed to the DNN classifier, producing a sequence of

classification scores between 0–1, which were interpreted as

a time-series of upcall occurrence probabilities. Empirically,

we found it useful to smoothen the classification scores

using a five-bin (2.5 s) wide averaging window. This greatly

reduced the number of false positives (factor of �5) at the

cost of a modest increase in the number of false negatives

(factor of �2). Finally, we applied a uniform detection

threshold, setting the bin value to 1 (“positive”) when the

score was greater than or equal to the threshold and 0

(“negative”) when it was below.

For the computation of recall, precision, and false-

positive rate (FPR), we merged adjacent positive (1) bins

into “detection events,” which extend from the lower edge

of the first bin, t, to the upper edge of the last bin, tþ NDt,
N being the number of bins in the event. To allow for minor

temporal misalignments between annotations and detec-

tions, we adopted a temporal buffer of 1.0 s, effectively

expanding every detection event to ½t� 2Dt; tþ ðN þ 2ÞDt�.
Considering the primary intended application of the detec-

tion algorithm, namely, to quantify upcall occurrences in

FIG. 4. (Color online) Positive spectrogram sample from dataset A.

Superimposed is a 1-s window centered on the upcall (dashed line) and a

trace drawn along the upcall (dotted curve), as computed by the heuristic

SNR algorithm described in the text.
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PAM data and provide occurrence times of sufficient accu-

racy to aid validation by a human analyst, such a small tem-

poral buffer is fully justifiable. The recall was then

computed as the fraction of annotated upcalls that exhibit at

least 50% overlap with a detection event, while the precision

was computed as the fraction of the detection events that

exhibit at least 50% overlap with an annotated upcall. Any

detection event that did not overlap with an annotated upcall

or exhibited less than 50% overlap was counted as one false

positive for the computation of the FPR.

III. RESULTS

A. Classification performance

We summarize the classification performance of the

DNN and LDA classifiers on the test datasets in terms of the

average F1 score, recall, and precision obtained in the nine

independent training sessions (Fig. 5). The DNN model

trained on the ABC dataset exhibits the best overall perfor-

mance, achieving a recall of 87.5% and a precision of 90.2%

on the AB test set (with standard deviations of 1.1% and

1.2%) and outperforming the baseline LDA model by a sta-

tistically significant margin (as evident from Fig. 6 below).

We have investigated the effect of increasing the size of

dataset C by up to a factor of 10 (15 000 upcalls), but found

only a negligible improvement in the performance of the

DNN model. (We note that the DCLDE 2013 dataset con-

tains 6916 logged calls. To produce a dataset with 15 000

upcalls, we added time-shifted copies of the logged calls to

the dataset.)

We have also investigated the effect of discarding sam-

ples with SNR below a certain minimum value, SNRmin,

from the AB test set (Fig. 6). For the DNN model, we

observe a gradual increase in performance as we restrict our

attention to upcalls with increasingly larger SNR values,

with the recall improving from 89% at SNRmin ’ 0 to 98%

at SNRmin ’ 12 and the precision improving from 91% to

100% across the same range of SNR. The performance of

the LDA model also improves with increasing SNR. This is

FIG. 5. (Color online) (a) DNN classification performance in terms of F1 score (top, large font), recall (middle, small font), and precision (bottom, small

font). Rows: training dataset; columns: test dataset. The colorscale indicates the F1 score. (b) LDA classifier performance.

FIG. 6. (Color online) (a) Effect of discarding samples with

SNR < SNRmin from the AB test dataset on the recall of the DNN and LDA

models trained on ABC. The lines show the average recall obtained in the

nine training sessions, while the shaded bands show the 10% and 90% per-

centiles. (b) Same, for the precision. (c) Number of positive and negative

samples in the AB test dataset with SNR � SNRmin.
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especially true for the precision, which improves from 70%

at SNRmin ’ 0 to 95% at SNRmin ’ 12, whereas the recall

reaches a maximum of 82% before worsening at the largest

SNR values.

In the following, we examine a small set of representa-

tive spectrogram samples, which have been either correctly

classified or misclassified by the DNN model (Fig. 7). We

divide the samples into true positives, true negatives, false

positives, and false negatives, and for each category we give

three examples reflecting different levels of certainty and

difficulty as perceived by the second expert: (a) certain and

easy, (b) certain, but difficult, and (c) uncertain. Here, it

must be remembered that the experts had access to a larger

temporal context of �1 min to inform their decision.

Notably, this may have helped the expert to correctly iden-

tify calls with low SNR in cases where the calls form part of

a call series.

A few observations can be made: the model is able to

correctly identify upcalls with very different SNR (B2225,

B3121); the model is able to correctly classify negatives

containing potentially confusing patterns (A12), but not

always (A111); the model struggles in cases with low SNR

(A134, A1858); the model can be confused by tonal noises

and multipath echoes (B205). These deficiencies could

FIG. 7. (Color online) Representative 3-s spectrogram samples. First column: true positives; second column: true negatives; third column: false positives;

fourth column: false negatives. For each category, three examples are given reflecting different levels of certainty and difficulty as perceived by the second

expert: (a) certain and easy; (b) certain, but difficult; (c) uncertain. Spectrograms are labeled by their ID and SNR (in dB).
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potentially be resolved by enlarging the temporal window,

thereby giving the model access to the same contextual

information that is available to the human analyst, notably

the appearance of an upcall series.

Finally, we highlight a limitation of the classification

results reported in this section. Since datasets A and B only

contain samples flagged by the TFBD algorithm, the perfor-

mance demonstrated on these datasets is not necessarily

representative of the performance on a random selection of

samples from a continuous recording, and the reported met-

rics (Fig. 5) cannot be readily applied to continuous data. In

the next section, we address this limitation by testing the

performance of the classifiers on dataset B*, which has been

subject to full manual analysis.

B. Detection performance on continuous data

The detection algorithm introduced in Sec. II G was

tested on dataset B*, which consists of fifty 30-min segments

and has a total of 1157 upcalls. The number of calls per file

exhibits significant variation, ranging from none to 100 with

a median value of 15.

We summarize the performance of the detection algo-

rithm in terms of recall, precision, and FPR (Fig. 8). The

detection threshold is seen to provide a convenient tunable

parameter to adjust the detection performance, depending

on whether high precision or high recall is desired. One also

notes that the nine independent training sessions produced

detectors with very similar recall, but varying levels of pre-

cision. In particular, the best-performing detector achieves a

recall of 80%, while maintaining a precision above 90%,

corresponding to a FPR of five occurrences per hour for this

particular test dataset, while the “average” detector achieves

a recall of 60% for the same level of precision.

Finally, we have considered the effect of discarding

samples with SNR below a certain minimum value, SNRmin,

from the test dataset (Fig. 9). We observe a gradual improve-

ment in performance with increasing SNR. For example, by

considering only samples with SNR > 4:0, the FPR is

reduced from 35 to 6 occurrences per hour while maintaining

a recall of 90% and retaining more than 95% of the upcalls

in the test dataset.

IV. DISCUSSION

The DNN classifier has been found to outperform the

baseline LDA model, achieving recall and precision of

FIG. 8. (Color online) Detection performance on the continuous test data

(dataset B*) in terms of recall (R), precision (P), and FPR. The lines show

the average performance while the shaded bands show the 10% and 90%

percentiles. (a) R and P versus the adopted detection threshold. (b) P-R and

FPR-R curves.

FIG. 9. (Color online) Detection performance of the “average” model on

the continuous test data (dataset B*) for the upcalls meeting the criterion

SNR > SNRmin. The performance is shown in terms of recall (R), precision

(P), and FPR for the five cut-off values SNRmin ¼ 0:0, 2.0, 4.0, 8.0, 12.0.

(a) FPR vs R; (b) P vs R; (c) number of upcalls vs SNRmin.
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87.5% and 90.2% on the AB test dataset. Additionally, the

DNN models trained on the combined datasets generally

performed better than the models trained on the individual

datasets, also when tested on the individual datasets. For

example, models trained on AB consistently outperformed

models trained exclusively on A, even when tested solely on

A. In contrast, the baseline LDA model achieved worse per-

formance when trained on combined datasets. This is an

important observation because it suggests that DNNs have

the capacity to handle larger variance in the data, and indeed

benefit from being trained on data with greater variance,

producing models that are more robust to inter-dataset

variability.

On the other hand, we found that the DNN models

generally performed poorly when trained on one dataset, but

tested on another (e.g., trained on A, but tested on B). This

behavior was not observed with the LDA models, whose

less performant solution appear to be less sensitive to the

training dataset.

The quality and accuracy of the training datasets built

as part of this work are limited by both the use of a classical

TFBD to select candidate upcalls for expert validation and

by human subjectivity in the validation step. Any bias in the

selection or validation step will be reflected in the training

dataset and hence affect the learning of the DNN. To

explore the bias in the validation step, a second expert was

tasked with reviewing all the incorrectly classified segments

(false positives as well as false negatives) and an equally

large number of correctly classified segments randomly

sampled from the AB test dataset (cf. Sec. II B). The second

expert flagged about half of the incorrectly classified seg-

ments as “borderline,” implying that the expert considered

these classifications as being highly uncertain. On the other

hand, the second expert only flagged 9% of the correctly

classified segments as borderline. Removing the borderline

cases from the test data improves the recall and precision by

2% and 5%, respectively. However, the second expert also

changed some of the labels not considered to be borderline.

Adopting the second expert’s revised labels for the test data,

the recall decreases by 6% while the precision increases by

2%. These changes in performance metrics testify to the dif-

ficulty of obtaining accurate annotations on PAM data. It

would be interesting to investigate the inter-annotator vari-

ability in a more systematic and controlled manner than

done here, but this is beyond the scope of the present study.

(For example, it can be argued that the second expert may

have been biased by prior knowledge of the labels proposed

by the first expert and the DNN.)

In order to obtain a realistic assessment of the perfor-

mance that can be expected of the DNN model in a practical

setting, we have tested the model’s ability to identify upcalls

in continuous acoustic data representative of the actual

conditions required for a NARW upcall PAM DC system.

In order to obtain an unbiased estimate of the detection

performance, these data were subject to a complete manual

validation not resorting to the use of a classical detection

algorithm to select candidate upcalls. The best-performing

model achieved a recall of 80% while maintaining a preci-

sion above 90%, corresponding to a FPR of five occurrences

per hour for the chosen test dataset, while the “average”

model only achieved a recall of 60% for the same level of

precision. However, by restricting our attention to upcalls

with SNR � 4:0, the recall of the average model was

increased to 85% for the same level of precision while

retaining over 95% of the upcalls. Existing algorithms are

capable of achieving similar levels of recall, but at the cost

of a significantly higher FPR (DCLDE 2013; Simard et al.,
2019).

Finally, we note that a related work entitled “Deep neu-

ral networks for automated detection of marine mammal

species” (Shiu et al., 2020) has been published during the

review of our paper. We would like to highlight the comple-

mentary nature of the two studies. While similar deployment

techniques (surface buoys, bottom moorings) and acoustic

recorders were used, Shiu et al. (2020) considers acoustic

data from several locations off the east coast of the US,

whereas our work considers data from the Gulf of St.

Lawrence. Where Shiu et al. (2020) provides a comparison

of several network architectures, our work provides insights

into the importance of dataset size and variance. Moreover,

our work provides insights into recall variability with SNR.

Although a direct comparison of the detection performances

achieved in the two studies cannot be made since different

test datasets were used, we note that the recall obtained by

Shiu et al. (2020) on continuous test data is somewhat

higher than the recall obtained in our study (95% vs 87% for

a FPR of 20 h�1). However, the difference is within the

range of variability that could be explained by differences in

SNR in the test data.

V. CONCLUSION

In summary, we have demonstrated that DNNs can be

trained to recognize NARW upcalls in acoustic recordings

which have been made with different acoustic equipment

and deployment types, and hence differ significantly in

terms of signal amplitude and noise background. By training

a DNN on a dataset comprised of about 4000 samples of

NARW upcalls and an approximately equal number of nega-

tive samples, we achieved recall and precision of 90% on a

test dataset containing about 700 upcalls and a similar num-

ber of negatives. The DNN was observed to benefit from

being trained on data with increased variance, suggesting

that improved performance could be achieved by further

expanding the variance of the training dataset. Using the

DNN classifier, we implemented a simple detection algo-

rithm, which exhibited good performance on continuous test

data, achieving a recall of 80% while maintaining a preci-

sion above 90%. It would be interesting to explore still more

sophisticated machine-learning approaches, most notably

approaches that consider a wider temporal context, as done

by the human experts, but this is beyond the scope of the

present study and is left for future work. These results high-

light the potential of DNNs for solving sound detection and
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classification tasks in underwater acoustics and motivate a

community effort towards building larger and improved

training datasets, especially for deployments with interfering

noise events, which present more challenging acoustic

conditions.
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APPENDIX: SUPPLEMENTARY MATERIAL

The acoustic data, expert annotations, and computed

SNR values are available at DOI: 10.20383/101.0241, while

the code to generate the training and test datasets, train the

neural network, and evaluate its performance is available at

DOI:10.5281/zenodo.3736625.
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