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Researchers explore the use of modern machine 
learning methods to automate the analysis of data 
from acoustic tags. 

Deep Learning and Fish Tags

Who should read this paper?
Have you ever had to manually analyze hours upon hours of fish tracking 
data and found yourself wondering if a machine could be trained to solve the 
task for you? Then this paper is for you. You will also find this paper worth 
reading if you are curious about what is stirring in the world of acoustic fish 
tracking technology or interested in novel and surprising applications of 
machine learning.  

Why is it important?
There is a growing interest in studying smaller fish and understanding their 
interactions with humans and the effects of modifications to fish habitats. A 
fish tracking technology has been invented suitable for tracking large numbers 
of fish simultaneously in noisy environments. However, the analysis of the 
receiver data is time-consuming and expensive to complete because some 
steps have to be done manually. The machine learning solution proposed in 
this paper has the potential to alleviate the need for manual validation, greatly 
accelerating the data processing.

The researchers have taken a deep neural network architecture known as 
U-Net, commonly used to solve image segmentation problems (e.g., analysis 
of MRI images or geospatial satellite imagery), and trained it to solve an 
entirely different task; namely, the U-Net has been trained to detect and 
distinguish acoustic tags based on their transmission rate. Further work is 
required before the machine learning solution can replace manual validation. 
But the researchers hope that the technology will be ready for commercial 
application within one year.
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ABSTRACT

Acoustic tags are increasingly being used in research to track movements of marine animals, 
generating large, complex datasets which require automated analysis methods. In this work, 
we explore the use of modern machine learning methods to automate the analysis of data 
from acoustic tags with a novel encoding developed for the study of large numbers of fish in 
noisy environments. These tags emit pulses at a configurable interval but without any other 
encoded identification message. This reduces power usage and enables continuous tracking 
but the challenge is that tags must be identified based on the transmission rate and the position 
reconstructed by triangulating detections by at least three independent receivers. Utilizing a 
visual representation of the time series data generated by the tag, we adapt a deep neural network 
architecture known as U-Net to the task of identifying individual acoustic tag transmissions. 
Testing our model on unseen data, we achieve an accuracy of 97%, outperforming the solution 
currently in use, which achieves an accuracy of 41%. Our model shows significant promise and 
represents the first step towards enabling the large-scale application of this new acoustic tracking 
technology to fisheries operations.
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INTRODUCTION

Tracking the movements of marine animals in 
space and time plays an increasingly important 
role in the sustainable management of ocean 
resources [Hussey et al., 2015]. In the context 
of fishery operations research, there is a desire 
to utilize fish tracking technology to gain 
a better understanding of fish movement, 
allowing fisheries to optimize both operations 
and sustainability by improving the targeting of 
desired fish stocks while reducing bycatch. 

In particular, studies that require large numbers 
of tags in one place at one time are increasing 
in numbers and importance as we study 
smaller fish and their interactions with human 
modifications to their habitats [Muñoz et al., 
2020; Aspillaga et al., 2021]. Unfortunately, 
commonly employed acoustic tags, which 
transmit complex sequences of acoustic 
pulses for identification, are not well suited 
for such studies because they are susceptible 
to interference from other tags, multi-path 
signals, and noise signals. Innovasea, an ocean 
technology company headquartered in Halifax, 
N.S., has invented an improved fish tracking 
solution that employs a novel encoding scheme 
[Ehrenberg and Steig, 2003; 2009] in which 
tags are identified based on the transmission 
rate as opposed to a complex pulse sequence. 
Past studies have shown that this coding 
scheme can provide high resolution positioning 
and tracking of tagged fish for large numbers 
of fish simultaneously in noisy and varied 
environments and at farther ranges [Steig et 
al., 2004; Ransom et al., 2008; Semmens, 
2008]. Therefore, it has the potential to enable 
improved tracking for large numbers of tagged 
fish in noisy aquatic environments. The results 

of these studies came at a high cost, however 
– the analysis of the receiver data was time-
consuming and expensive to complete because 
some steps had to be done manually. This 
creates a bottleneck in the data processing 
which has made it difficult to use the solution in 
fishery operations.

In this paper, we discuss how deep learning 
techniques can help automate the analysis of the 
data generated by the novel encoding scheme, 
paving the way for applications to fishery 
operations. Within the last decade, deep neural 
networks have become the preferred machine 
learning approach for solving a wide range of 
tasks, outperforming existing computational 
methods and achieving human-level accuracy 
in domains such as image classification [He 
et al., 2015] and natural speech processing 
[Hinton et al., 2012]. Originally inspired by 
the human brain, neural networks consist of a 
large number of interconnected “neurons,” each 
typically performing a simple linear operation 
on input data, specified by a set of weights and 
a bias, followed by an activation function. In 
a supervised training approach, the network 
is given examples of labelled data, and the 
weights and biases are adjusted to produce the 
desired output using an optimization algorithm. 
Modern neural networks exhibit multi-layer 
architectures, which enable them to build 
complex concepts out of simpler concepts and, 
hence, learn a non-linear representation of the 
data conducive to solving a given task. One of 
the most commonly encountered architectures 
is the convolutional neural network (CNN) 
which is particularly well adapted to the tasks 
of analyzing image data owing to its use of 
weight-sharing filters that slide across the 
image [Goodfellow et al., 2016].
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We adapt a particular variation of the common 
CNN known as U-Net [Ronneberger et al., 
2015], developed specifically for solving 
image segmentation tasks, to analyze an 
image representation of the acoustic time 
series data. We identify several scenarios 
in which the analysis becomes particularly 
challenging and devise data augmentation 
strategies to overcome these challenges. 
Finally, we test our U-Net model on unseen 
tag data achieving near-human accuracy and 
outperforming the only existing automated 
solution by a significant margin.

DATA COLLECTION AND PROCESSING

Encoding Scheme
In the encoding scheme [Ehrenberg and 
Steig, 2003; 2009], the fish tags transmit 
short-duration acoustic pulses, referred to as 
“pings,” at regular intervals that are detected 
by dedicated underwater receivers. The tags are 
then identified from the observed delay between 
successive pings. In typical applications, the 
delay is between 1 s and 10 s, where shorter 
periods yield higher spatial resolution, but 
also shorten the tag’s lifetime due to increased 
energy consumption. This tradeoff between 
resolution and energy consumption drives the 
need for more efficient encoding schemes. 
Moreover, the tags can be configured to emit 
not one, but two, closely spaced pings. Varying 
the temporal separation of the two pings gives 
another way to distinguish between tags.

The strength of the encoding scheme lies 
in its simplicity. Other commonly used 
encoding schemes employ complex sequences 
of pulses. Such schemes allow tags to 
be uniquely identified based on a single 

transmission but consume more energy and 
are more susceptible to noise interference. 
As a direct result, the novel encoding scheme 
has the potential to provide higher tracking 
resolution and enhanced range.

Image Representation
While the new encoding scheme sounds 
simple to implement, in practice it can be 
rather challenging to identify acoustic tags 
based on their ping rate, especially if multiple 
transmitting tags are within the detection 
range of the receiver simultaneously. 
Moreover, natural environment noise signals 
and multi-path reflections of pings clutter 
the picture and must be ignored. To facilitate 
the identification of tags based on their 
ping rate, an image representation has been 
developed in which the received pings are 
plotted according to their time of arrival (x) 
and their displacement (y) with respect to 
a chosen clock rate. In this representation, 
pings originating from a (stationary) tag 
with a ping rate that matches the clock rate 
will describe a horizontal track, allowing 
them to be identified and “marked” by a 
human analyst through visual inspection. As 
a tagged fish moves, the track will deviate 
slightly from horizontal due to the Doppler 
effect, conveying important information 
about the fish’s motion, but also complicating 
the marking task.

In Figure 1, we show an example of the image 
representation used to identify the acoustic 
tags. Note that for improved visibility only 
part of the y-axis is shown; the full y-axis 
extends from 0 s to a little over 9 s (the period 
of the acoustic tag). The raw pings are shown 
as black dots, while the pixels identified 
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by our proposed U-Net machine-learning 
solution (discussed below) are shown as the 
shaded (green) area. 

In a manual review, the human analyst 
typically inspects the images at varying 
temporal scales and resolutions to better 
identify any track-like features. However, 
for our first attempt at automating the image 
analysis task, we opted to work with a single 
temporal scale and resolution to simplify the 
model development. Specifically, we used 
an image size of 192 x 192 bins with an 
x-axis (temporal) range of 30 minutes, while 
the y-axis range was adjusted to match the 
known tag period which were in the range 
of 9-10 s for the dataset we worked with. 
This implies an x-axis time resolution of 9.4 
s and a y-axis time resolution of around 50 
ms. While we did not perform a systematic 
investigation of the optimal image size 
and resolution, it seems plausible that an 
x-axis time resolution close to the tag period 
should provide optimal performance. (We 
note that the particular machine learning 
model used in this work requires the input 

image to have dimensions that are integer 
multiples of 16.)

The image representation described above 
requires prior knowledge of the tag period 
and, hence, the tag identification method 
proposed here depends on this information. In 
most application scenarios, this information 
will be available, but there are also scenarios 
in which it may be of interest to be able to 
detect acoustic tags without prior knowledge 
of the period, such as detecting tagged fish 
that have travelled long distances. Developing 
an automated tag identification solution 
that does not require prior knowledge of 
the period is an interesting problem, which, 
however, is beyond the scope of the present 
work. We discuss this problem further in the 
‟Conclusion and Outlook” section.

Position Reconstruction
In order to reconstruct the position of an 
acoustic tag, its transmissions must be 
detected independently by at least three 
hydrophones. Since, as a general rule, 
acoustic tags become harder to detect the 

Figure 1: Scatter plot showing an example of the image 
representation used to identify the acoustic tags. Note that 
for improved visibility only part of the y-axis is shown; the 
full y-axis extends from 0 s to a little over 9 s. The black 
dots are the raw pings while the shaded green regions are 
the pixels identified by the U-Net machine learning solution 
proposed in this work. A zoom-in of the region enclosed by 
the box (dashed line) is shown in Figure 4.
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further they are from the receiver, this has 
important implications for the design of 
hydrophone arrays, if one is interested in 
tracking the movements of fish across a site 
without gaps in coverage. 

In the image representation discussed above, a 
distant acoustic tag will produce a faint track 
because a high proportion of the emitted pings do 
not reach the hydrophone (e.g., due to reflections 
of natural obstacles such as rocks) or are too 
weak to be detected by the time they reach the 
hydrophone (due to attenuation). Therefore, it is 
of interest to develop a marking solution that is 
able to detect as faint tracks as possible, as this 
will enable acoustic tags to be detected at farther 
ranges, allowing researchers to cover a given 
study area with fewer hydrophones, thereby 
reducing deployment costs significantly. 

Existing Automated Solution – MarkTags
Currently a software solution known as 
MarkTags, which automates the marking of 
acoustic tags, is being utilized. MarkTags 
utilizes “conventional” rule-based algorithms 
rather than a machine learning approach, e.g., 
algorithms that remove noise by filtering 
based on the expected tag period or make 
assumptions about the expected trajectory 
of the tag. The MarkTags software has 
several parameters that can be adjusted to 
optimize its performance. However, for 
most applications the accuracy remains 
insufficient. To the best of our knowledge, 
MarkTags is the only existing, automated 
solution for identifying acoustic tags based 
solely on their transmission rate.

Dataset
For this work, we used a dataset originating 

from a study conducted in a shallow river 
environment in a location in northern 
California, U.S., employing an array of 
10 hydrophones and 35 acoustic tags, 25 
of which were attached to juvenile Green 
Sturgeon while 10 were time-synchronous 
tags used to synchronize the receivers with 
the GPS clock. The hydrophones were of the 
type HR3-307 kHz (Innovasea, N.S.) while 
the acoustics tags were of the type V3-307 
kHz (Innovasea, N.S.). The tags weigh 0.3 
g, measure 15 mm in length and 4 mm in 
diameter, and were programmed to transmit 
pings with periods in the range of 9-10 s. 
Data were recorded for 43 days and subject to 
manual marking, resulting in the identification 
of 21.5 million pings.

Data Structure
The dataset contains 426 raw data files and 
the same number of files with the results of 
the manual marking effort. Each file contains 
data from one day (24 hours) of recording 
from a single hydrophone. A small excerpt of a 
marked file is shown in Figure 2.

The data consists of a time series of detected 
pings. For each ping, the following variables 
are recorded as shown in Table 1. In this work, 
we have confined our attention to the variables 
that are considered the most important for the 
marking task based on the experience of human 
analysts, as indicated in the third column. In 
particular, we have not considered the pulse 
shape (as given by the pulse width at 3 dB, 6 dB, 
and 12 dB) or the estimated noise level, which 
could potentially lead to improvements in the 
marking accuracy. In future work, it would be of 
interest to develop models that can leverage this 
additional information. 
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Figure 2: A small excerpt of a 
marked acoustic data file.

Table 1: Information recorded for each received ping in the data files. Note that the last two variables are only presented in the marked data 
files (not in the raw data files).
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MODEL DEVELOPMENT

Using the image representation discussed 
above, the problem of identifying the acoustic 
tags has effectively been transformed to the 
task of recognizing track-like features in 
an image, a time-consuming but accurately 
solvable task for a trained human operator. 
This is also a task that CNNs have proven 
highly successful at solving in recent years 
[Goodfellow et al., 2016]. In this project, we 
adopted a staged approach. In the first stage, 
we trained a CNN at determining whether a 
certain acoustic tag was present in a given 
image. This demonstrated that deep neural 
networks could be trained to recognize the 
tracks produced by the acoustic tag with high 
accuracy, but also revealed two failure modes. 
Data augmentation strategies were developed 
to mitigate these problems, as discussed in 
detail below. In the second stage, we trained 
a so-called U-Net [Ronneberger et al., 2015] 
at determining the precise location and extent 
of the tracks in the image. Here, the data 
augmentation methods developed in the first 
stage played an important role in enhancing 
the model performance.

Augmentation Methods
In this work, two augmentation methods 
were found to have a beneficial impact on the 
performance of the U-Net. 

In the first augmentation technique, we 
add random offsets between 0 and the ping 
period to the time stamps, thereby generating 
multiple versions of the same image 
which only differ by a vertical translation. 
We found that this led to a significant 
improvement in the U-Net’s ability to 

segment tracks irrespective of their vertical 
placement in the image.

The second augmentation technique was 
developed to help the U-Net to only identify 
the tag of interest and not get confused by tags 
with periods close to that of the tag of interest. 
In designing this augmentation technique, 
it is important to consider the effect of fish 
movement: a fish moving towards or away 
from the receiver generates pings separated 
by a time interval that is slightly shorter or 
longer than the actual period, respectively. 
This effect is also referred to as the Doppler 
effect, and, for movement at constant velocity, 
results in a ping track with non-zero slope. 
Fish rarely swim at a constant velocity, 
however, but change speed and direction often 
so the observed tracks can be rather complex 
and only approximate a straight line when 
viewed at coarse resolution.

For example, a fish with a tag period of 9 s 
moving towards the receiver at a speed of 1 
m/s will have its apparent period reduced by 
approximately 1 / 1,500 x 9 s = 6 ms, where the 
speed of sound in water is 1,500 m/s. Therefore, 
assuming 1 m/s as an upper limit on attainable 
fish speeds, we may conclude that observed 
periods should be within 6 ms of the expected 
period. Based on this estimate, we augment the 
images as follows: for each image, we generate 
two related images by computing the remainder 
with respect to periods that are 10 ms shorter 
and 10 ms longer than the actual period, and 
label both of these images as “negative.” We 
note that the chosen shift of 10 ms depends on 
the tag period and the assumed maximum swim 
speed of the tagged fish. In particular, faster 
fish may necessitate larger shifts. 
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We note that the above augmentation techniques 
were only applied to the training data. The test 
data were analyzed without alteration.

U-Net
In digital image processing, image 
segmentation is the process of dividing an 
image into segments, for example, identifying 
distinct objects like a cat or car in a real-world 
photo. Thus, segmenting an image means 
assigning labels to each pixel. 

Here, we train a deep neural network 
architecture known as U-Net [Ronneberger et 
al., 2015] at identifying the near-horizontal 
tracks produced by the acoustic tags. The 
U-Net is a state-of-the-art deep neural 
network architecture for image segmentation 
which has been successfully applied to 
diverse data domains including medical 
imaging [Li et al., 2018], self-driving vehicles 
[Tran and Le, 2019], and satellite photography 
[McGlinchy et al., 2019]. The work presented 
here presents a novel adaptation of the U-Net 
to acoustic fish tracking data.

The U-Net assigns a score between 0 and 
1 to each pixel in the image, where a high 
score indicates that the pixel likely forms part 
of a ping track while a low score suggests 
the opposite. For the purpose of obtaining 
a definite label, a fixed threshold value is 
commonly adopted to convert the score 
mask into a binary (yes/no) mask. A larger 
threshold value will generally result in fewer 
false identifications (“false positives”), but 
also result in more pings being missed (“false 
negatives”) whereas a lower threshold value 
will have the opposite effect, increasing the 
number of false identifications but lowering 

the number of missed pings. In this work, a 
threshold value of 0.2-0.3 proved optimal.

Inverse Mapping: Pixels to Pings
As mentioned above, the U-Net outputs a 
mask of scores between 0 and 1, which may 
be converted to a binary mask using a constant 
threshold value. 

When a pixel only contains a single ping, 
the reverse mapping from pixel to ping is 
straightforward. However, in some cases a 
single pixel contains multiple pings with near 
identical timestamps, creating ambiguity as to 
which ping should be attributed to the acoustic 
tag. Since the vertical pixel size is about 50 
ms, this ambiguity can, in the very worst 
case, lead to substantial errors in positioning, 
theoretically up to 1,500 m/s x 50 ms = 75 m.

Such ambiguity may occur, e.g., due random 
noise signals or, more commonly, due to 
the detection of a multi-path signal, e.g., a 
reflection of the water surface or the seabed. 
Depending on the seabed depth and the relative 
positioning of the hydrophone and the acoustic 
tag, the delay between the direct-path signal 
and the multi-path reflections may be as short 
as a few milliseconds.

In order to filter out such noise signals and 
multi-path signals, we have implemented 
a simple rule-based algorithm that draws a 
trendline through the pings identified by the 
U-Net and discards any pings that deviate by 
more than a set tolerance from the trendline. In 
building the trendline, the algorithm initially 
considers only “high-fidelity” detection events 
in which both the primary and the secondary 
ping were detected with a temporal spacing 
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consistent with the known subcode. At every 
step, we update the vertical position and slope 
of the trendline by computing a weighted 
sum of the predicted position and slope 
(assuming a constant slope) and the observed 
position and slope. The relative weighting is 
determined as exp(-dt/T) where dt is the size 
of the time step and T is a fixed time constant, 
which effectively controls the “inertia” of the 
trendline. In a second pass, “low-fidelity” 
pings are recovered if they fall within a set 
tolerance of the trendline. If ambiguity persists, 
the earliest detected ping is used. 

Model Training and Testing
To facilitate model development, we split 
the data into non-overlapping, six-hour 
segments, and further group these segments 
through random selection into three categories 
according to their use as training, validation 
or test data, in proportions of 60%, 20%, 
and 20%. We used six-hour long segments 
to reduce proximity between training and 
test samples and, thereby, train a robust and 
generalizable model. When generating images, 
we use a step size of 10 minutes, which implies 
a 20-min overlap between successive images. 
Thus, 34 different images are generated from 
each six-hour segment. The use of overlapping 
images within a six-hour segment allows us to 
make better use of the available data.

In the testing phase, the overlap between 
consecutive images implies that each pixel gets 
assigned (up to) three different scores by the 
U-Net. Before converting the scores to a binary 
mask, we average the available scores.

We trained a U-Net model with data of four 
different tags and six different hydrophones. 

The tags chosen are 9289.00-25, 9152.00-
24, 9262.00-23, and 9316.00-25; and the 
hydrophones 1 to 6 are chosen for training. 
Among the four tags, the first three tags were 
chosen because they have the greatest number 
of pings compared to all the other tags in the 
study while the fourth tag was chosen because 
it had comparatively fewer pings. These 
choices were made to i) maximize the number 
of images containing marked pings, while ii) 
still exposing the U-Net to both frequently 
appearing and rarely appearing tags to achieve 
satisfactory performance across a wide range 
of tags. In order to obtain a reliable measure of 
the U-Net’s ability to handle unseen data, we 
tested its performance on tags not used in the 
training phase. 

Tables 2 and 3 provide a summary of the 
hydrophone-tag combinations used for training 
and validation, and testing, respectively. For 
training and validation, we combine the data 
from the various hydrophone-tag combinations 
into a single dataset, while for testing we keep 
the data separated. Note that some pings were 
not present near every hydrophone and the 
prevalence of a given tag varies greatly by 
hydrophone and temporally.

The U-Net was trained for 20 epochs (i.e., until 
it had seen every sample 20 times) although 
the accuracy on the validation set typically 
saturated already after the first few epochs of 
training. Standard values were used for U-Net 
hyperparameters throughout the training.

Computing Infrastructure
The model training and testing were done on 
the DeepSense high performance computing 
cluster with each training cycle or test using 
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Table 2: Summary of the training set. For each hydrophone-tag combination, we list the number of pings marked by the human analyst used 
for training and the “tag presence” calculated as the ratio of marked pings to the total number of pings emitted by the tag within the time 
periods considered for training.
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a 20 Core IBM Power8NVL 4.0 
GHz compute node with 512 GB 
of RAM and a pair of NVIDIA 
Tesla P100 GPUs with 16 GB of 
GPU memory. It took about an 
hour and thirty minutes to train 
the U-Net on the DeepSense 
high performance computing 
cluster compared to nearly 20 
hours on a laptop, which was 
done initially.

Performance Metrics
To quantify the model’s performance, we use 
the F1-score [Goutte and Gaussier, 2005], 
defined as the harmonic mean of precision and 
recall, i.e., F1 = 2P*R/(P + R), where R is the 
recall, i.e., the fraction of the pings of interest 
that were marked, and P is the precision, i.e., 
the fraction of the marked pings that were 
in fact pings of interest. Thus, the F1 score 
considers both recall and precision, attaching 
equal importance to the two.

RESULTS

In Figure 3, we compare the performance of 
the U-Net on the six test sets to the MarkTags 

auto-marking software. In all the cases, the 
U-Net model outperforms MarkTags by a 
large margin, deviating only by a few percent 
from the human analyst. The U-Net achieves 
an accuracy of (96.6 +- 1.9)%, while the 
MarkTags auto-marking solution only achieves 
an accuracy of (41 +- 10)%.

It is worth noting that the manual marking 
effort involves a certain level of subjectivity, 
i.e., there are cases in which the identification 
of pings is ambiguous and the human 
analyst has to make an “educated guess” 
at which pings to mark. Indeed, in testing 
the performance of the U-Net we came 

Table 3: Summary of the test sets.

Figure 3: Marking accuracy of the U-Net solution proposed in this work compared to 
the existing auto-marking solution of the MarkTags software.
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across cases in which there was substantial 
disagreement between the U-Net and the 
human analyst, but the human analyst appeared 
to have made an incorrect assessment. 
An experienced analyst was tasked with 
performing a blind analysis of these cases and 
when their effort was compared to the U-Net’s 
prediction, it was found that the results were 
considerably closer to the U-Net’s predictions, 
with the F1-score increasing from 74% to 85% 
on these remarked intervals. 

An example of the image representation used 
to identify the acoustic tags was shown in 
Figure 1. In Figure 4, we show a zoom-in of 
the region enclosed by the box, with the pings 
marked by the human analyst indicated by 
empty squares (red), and the pings marked by 
the U-Net after applying the inverse pixel-
>ping mapping indicated by empty circles 
(green). Overall, we observed a high level 
of agreement between the two, although in a 
few cases there is disagreement. In particular, 
there are three high-lying pings that have 
been marked by the U-Net although they are 
located somewhat above the trend line. These 
pings likely represent multi-path signals and, 
therefore, were not marked by the human 
analyst. By adjusting the parameters of the 

inverse-mapping filter, in particular the 
“deviation tolerance,” we can ensure that these 
pings are not marked by the U-Net.

Faint Tracks
Upon closer examination of the test sets, we 
have found that the U-Net performance is 
uneven across the test sets. In particular, the 
U-Net was unable to detect very faint tracks 
and also struggled to determine the precise 
start and end points of well-resolved tracks. 
An example of a faint track, in which only 
a small fraction of the transmitted pings are 
detected by the receiver, is shown in Figure 5. 
The image also contains a substantial number 
of pings from other acoustic tags, which makes 
this a particularly challenging case. As one can 
see, the U-Net was only able to detect a subset 
of the pings marked by the human analyst. 

Detecting faint tracks and determining the 
precise start and end points of tracks is 
particularly important for fish movement 
reconstruction, which requires the acoustic 
tag to be detected independently by at least 
three hydrophones. By improving the U-Net’s 
ability to detect faint tracks, acoustic tags will 
become detectable at farther ranges, allowing 
us to cover a given study area with fewer 

Figure 4: Zoom-in of the region enclosed by the 
box in Figure 1, with the pings marked by the 
human analyst indicated by empty squares (red), 
and the pings marked by the U-Net after applying 
the inverse pixel->ping mapping indicated by 
empty circles (green). 
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hydrophones, thereby, reducing deployment 
costs significantly. For this reason, our future 
efforts will focus on improving the U-Net’s 
ability to detect faint tracks.

CONCLUSION AND OUTLOOK

Acoustic tracking technology can be used to 
gain a better understanding of fish movement, 
ultimately allowing fisheries to optimize both 
operations and sustainability. Studies that 
require large numbers of tags in one place 
at one time are increasing in numbers and 
importance as we study smaller fish and their 
interactions with human modifications to their 
habitats [Muñoz et al., 2020; Aspillaga et al., 
2021]. However, current tracking solutions 
are susceptible to noise and interfering signals 
and, hence, do not work well for such studies. 
A novel solution in which tags are identified 
solely from their ping rate has the potential 
to overcome these challenges, but the data 
generated by this solution require manual 
verification, which has made it difficult to 
operationalize the technology.

In this work, we have shown deep learning 
methods can help automate the analysis 
of the acoustic data. Leveraging a large, 
manually annotated, acoustic dataset and 
employing several data augmentation 
techniques, we have trained a neural 
network architecture known as U-Net to 
detect acoustic fish tags. The dataset derives 
from a month-long study performed in 
a shallow river environment, employing 
several dozen tags and 10 receivers. When 
the trained U-Net was asked to identify tags 
not seen during the training phase, it was 
able to do so with an accuracy of over 95%, 
which is close to the accuracy achieved by 
human analysts.

Employing modest computational resources, 
we were able to process the full dataset in 
a matter of hours, whereas it takes about 
24 hours for one person to manually mark 
the data collected in just one day. Thus, the 
automated solution provides a considerable 
advantage in terms of both pace and effort 
compared to manual marking.

Figure 5: An example of a set of faint tracks which the 
U-Net struggles to identify.
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Several steps were taken to ensure a robust 
and generalizable model. This included 
splitting the data into six-hour segments 
to reduce proximity between training and 
test samples, application of several data 
augmentation strategies, and testing the 
model on unseen tags. Therefore, we believe 
that our work provides a good framework for 
training deep learning models to recognize 
patterns in acoustic data.

Our approach requires prior knowledge 
of the tag period to create images. 
Developing a model that does not require 
prior knowledge of the tag period would 
be relevant for some applications such as 
detecting tagged fish that have travelled long 
distances. A possible solution would involve 
detecting acoustic tags of unknown periods 
by computing the autocorrelation of the raw 
ping time series, although such an approach 
is unlikely to succeed if the signal to noise 
ratio is low or the tag experiences frequent 
and large Doppler shifts. A double-pass 
solution that combines the autocorrelation 
with the U-Net could potentially alleviate 
some of these difficulties.

Another, mostly technical, limitation of the 
current approach is that the U-Net only marks 
a single acoustic tag at a time (in a single 
hydrophone). A solution that could mark 
multiple acoustic tags simultaneously would 
be of interest from the point of view of ease of 
use and possibly faster computation.

Finally, we have found that the U-Net 
struggles at detecting faint tracks as well 
as determining the precise end points of 
well-resolved tracks. Resolving this issue 

is particularly important for fish movement 
reconstruction and will be pursued next.

It remains to be established how well the 
U-Net trained on this particular dataset 
generalizes to entirely new acoustic 
environments and study settings, for example, 
noisier environments in which multi-path 
signals occur more frequently. This includes 
environments where turbines are present, ocean 
environments affected by strong tidal currents, 
or river environments with rapids. Thus, future 
work would involve systematic investigation of 
generalization capacity to other datasets. 

While the U-Net is a highly appropriate 
architecture for solving the acoustic tag 
identification problem, it may not necessarily 
be the optimal choice. Therefore, future studies 
should also explore the efficacy of alternative 
networks. However, the results obtained so 
far are already highly encouraging. Our work 
demonstrates that deep learning can, if not 
entirely eliminate, drastically reduce the need 
for manual analysis of the data generated by 
the new encoding scheme, thus paving the 
way for large-scale application to fisheries 
operation. We are now working on improving 
and optimizing the U-Net model so that it can 
be integrated into daily operations.
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